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Using the framework of electrohydrodynamics we study steady motions of a conducting
medium composed of both, charged and uncharged components, Volume ¢harge present
in the medium and its interaction with the electric field, define the motion of the medi-
um, Two cases are considered, In the first case we assume that the parameter @ (Q =
= 45%gy L / Eg) is small and the elecwic field given, General solution of the preblem is
obtained in the explicit form for the case when the field E, is constant, and a family of
integral curves is constructed in the velocity-Mach number plane, If the velocity and
Mach number are known at some point of the flow, we can use these curves to find the
behavior of the flow downstream, In the second case we consider a flow in a variable
electric field {arbitrary values of @). A diagram constructed in the velocity-electric field
plane makes possible a visual study of the motion in the case of a variable electric field,
Singular points of the system of equations of the one-dimensional flow are investigated
and the stability of the transonic passage is discussed.

One~dimensional equations in a constant electric field were investigated in 1} under
a number of simplifying assumptions,

i, Fundamental equations, We consider a steady motion of 2 compressible,
nonviscous medium without heat conduction, possessing volume charge in an electric
field, We assume that all quantities depend on ¢ only and that the electric field has a
single component x, Motion in a channel of constant cross section in the case when the
electric field component normal to the walls is neglected, is an example of such 2 flow,

For the problem under consideration, the equations of electrohydrodynamics will have
the form pu = m = const, mu' -+ p" = qE, mle,T + 0.5u?)" = joE (1Y)

E' = 4nq, ¢' = — E, p= pRT, j= qu+ DE) = j, = const (1.2)
where p denotes the density of the medium, u is the z -component of the velocity
{(u > 0), p is pressure, ¢ is the electric volume charge density, F is the electric field
strength, T is the temperature, ; is the electric current density, ¢, and R are the spe-
cific heat at constant pressure and the gas constant, Tespectively, and the prime denotes
the derivatives with respect to z. We shall assume, for definiteness, that ¢ > 0. For
¢ < 0 the procedure is identical.

From {1, 1) and (1. 2) we obtain
. .2 w — IEMP(x —u) M= qEM3 (Y + 1) (v — us)

T Tmu (MY Tmut (M? — 1) a 3}
2 .
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where M js the gasdynamic Mach number and & is mobility,

2, Flow in a constant electric field, First equation of (1,2) can be writ-
tenas B =Qq,, Q=4ldngL/E, Ey=E/E, 4:=9/4%

where L is the characteristic length, We shall consider the case of small @, assuming
E = E, = const. Then, taking the expression for the charge density ¢ from the last
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equation of (1.2), we obtain a closed system of equations in 1 and M,
Introducing the dimensionless velocity U = u/ { uy } and eliminating & from (1.3),
we obtain dM {4+ 1) M (U — Ussign Eq) My
I = : y Ups=—0g 2.9)
] 2U (U — sign Eo) 1T+t
Gerneral solution of (2, 1) has the form
Mi— UlU —sign E, [ C— (Us— Mo | Us— sign By [¥
| —sign B, Y1 C’ - M2

2.2)

where U,and M jare the values of the parameters at cross section z = {,
General solution of (1, 3) with (2, 2) taken into account is given by

muy® 1
&= g (5 U U le— ) U -+ Vo) + 21 +

]

] wion Al 1U —~sign Eei 414 [Up—sign By| -1 9
+ Csign(U, szgn}fﬁ}{ T s B [Uo—sign Eo[" ] 2.3)

Equations (2,2) and (2, 3) define the dependence of the velocity and the Mach num-
ber on z.

The solution obtained can be conveniently investigated in the UM -plane,

Fig, 1 Fig, 2

Figures 1 and 2 depict the integral curves of Eq,(2.1) for B, > 0and B, <0,
respectively, The field of integral curves depends on a single parametetr ‘Y. Passage
along the integral curves in directions indicated by arrows, corresponds to the motion
downstream,

Let us consider the case E, > 0 (Fig. 1), The straight line /' = 1 and the lines
M =1 and U = U, shown by the broken lines, divide the plane into six regions,
Points 0(0, 0), 4 (0, 1) and B(1,1) are the singular points of (2. 1), In Sect.4 we
show that the points O and A are nodes, and B is a saddle point, The lines I/ = (rand
M = 0 represent particular solutions at the point @ ,the lines U = land M = 0
~ at the point 4 ,and the lines U = M? 2and U = 1 — at the point B. We note
that the line {7 = JM?% also passes through O, and the line /' = 1 connects the sin»
gular points 4 and B,

If in some cross section of the channel the velocity and Mach number have such values
that the corresponding points on the UM -plane are situated in region 6 and in the part
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of region 1 below the integral curve U = M?2, then the Mach number may reach the
value of unity during the passage downstream, This may, however, happen only at the
end of the channel, In region 4 the gas may be accelerated indefinitely, Integral curves
lying in the regions 2 and 3 terminate at the point A.

All points of intersection of the line U = U g With the integral curves with exception
of the point B are such, that the tangents to the integral curves are vertical at these
points,

If the initial values lie on the line U = M2 (when M <<1)oron U = 1 (when
M > 1), a continuous passage through the sound velocity may take place in the motion
along the channel, In the first case it is possible to pass from the subsonic to the subsonic
or supersonic mode, and in the second case — from the supersonic to the subsonic or super-
sonic mode. The outcome depends on the boundary conditions at the channel exit, In
Sect, 4 we show, that all modes in which a continuous passage takes place at the point
B , are stable, Formula (2, 3) yields the distance from the channel entty to the point at
which such a passage occurs, For the first and second case we have, respectively,

muy?

t= st A=) lr =T +r+ 11 (M, <)
muy? i
o= smp— (=) (>

Let us consider the case when Ey <C0. The tines U = 1/(y — 1) and M =1
divide the UM -plane into four regions, Electric current density is positive above the
line U = 1/ (y —1) and negative below it, Regions 2 and 3 correspond to the gene-
rating mode ( j E, << 0, j, > 0), and regions 1 and 4 — to the accelerating mode
(foEo > 0, j, <<0). Since in the given formulation j = j, = const, the passage
from the accelerating to the generating mode and vice versa, is impossible, Let us recall
that ¢ > 0. Figure 2 shows that under certain conditions a motion is possible in the
regions 2 and 3 such, that ¥ —» — on. From the last equation of (1, 2} it follows, that
in such a motion ¢ — oo ( &”, M’ and E*also tend to infinity),

If we consider a one-dimensional flow in a channel of arhitrary length, then the chan-
nel exit should correspond to the point at which the velocity assumes the value u=-bE.,
If the channel length is given, the correctness of the formulation,of the problem should
be ensured by the proper choice of the boundary conditions, The problem of formulation
of the boundary conditions for the system (1., 3) is discussed in Sect, 3.

The case j, = 0 corresponds to a gasdynamic flow with constant parameters,

We note that the case j, = 0 also describes a flow in an EHD generator in the stand-
by condition, and we have ¢= 0 and uo == —bE; = const. The potential difference over
the length L of the generator is Agp = —E,L = u,L/b.

3, Flow in a variable electric field., We shall consider the case of arbi-
trary (). We can integrate the last two equations of (1, 1), intreducing the electric field
potential @ and eliminating the charge ¢ with help of the first equation of (1,2). Then

we will have pu=m==const, mu + p — E?/8n = II = const 3.9
m(c,T + 0.5 u?) + jo@ = & = const (3.2)

Using the third equation of (1.2) we obtain from the above equations
27 (I -+ E2/ 8x) _ 2a=0 3.3
e Tm vt y=0 y= e B0 (3.3)



One~dimensional flows in electrohydrodynamics 291

which describes a third order surface in the uFy -space, containing the integral curves

f P of the initial system, However, only

_ ¥ that part of the surface on which
u>0and y > 0 ,is physically
meaningful. Translation along the
surface (3, 3) corresponds to a mo-
tion along the channel, Although
this surface can easily be constructed
in the uEy -space, various modes
of flow can be studied conveniently
in the case of a variable electric
field in the uwFE -plane, projecting
a part of the surface (3, 3) on the
plane y= 0 (Fig.3).

Equations describing the behavior

Fig, 3

of the integral curves on the ukE-plane have the form
du _ToE[u—(y—1)bE] dE _ 4nj, (3.4)
dz (u L BE)[(Y + D) mu—7ll —7E*/8n|' dx  u- BE :
First equation of (1, 3) and the relation

mu
M= T (1 4 E? ] 8% — mu) (3-5)

were used in constructing the first equation of (3. 4),

Formula (3. 5) follows from the second equation of (3, 1), Eliminating the variable x

from (3.4) we obtain du Elu—(y—1)bE] .
dE T Tin[(v + 1) mu — Y0 — YE?] 8] (3.6)

Below we shall only consider the case when Il > 0, since in the case of II << 0 the
procedure is analogous,

Figure 3 depicts the parabolas M = 1 (line ABCDF) and M = oo (line LHG).
Equations of these parabolas follow from (3, 5) and are, respectively,
——a;r-i—)—(E?an + 1), u=(E*/8n+1)/m (3.7)

The region contained between the straight line u = 0 and the upper parabola LHG
corresponds to a real flow in the u/ff-plane, The flow is supersonic (M > 1) in the
region above the parabola P ABCDF and subsonic (M <1) below it, In addition Fig,
3 shows the lines y = — bE (line OK) and u = uy= (y —1) bE (line ON). Rela-
tive positions of the parabolas M =1 and M = oo and the lines ¥ = u, and u=—bE
may vary according to the parameters v, I, m and &. Coordinates of the points of
intersection of the line # = u, and the parabola M = 1 are

E,=d+ A% Eg=d— A Y2, A\ =d>—8all, d = 4n(y2 — 1) mb /¥y
usyp=O —1) bE,p, E 5, =0 (3.8)
Figure 3 illustrates the case when A > 0, where we have two points of intersection,
when /\ = 0, then the line 4 = i, touches the parabola M/ = 1, and when A\ <0,
there are no common points, We note that the line & == u, can also intersect the para=-
bola M = oco. On crossing the line & == w,; and the parabola PABCDF we find,

that the derivative du / dE changes its sign everywhere except at the points 4 and B
where it needs not, On the line u = U, the derivative du / dE becomes zero, and on

U=
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the parabola PABC DF it becomes infinite, Points of intersection A and B are singular
points of Eq. (3.6) as well as the point C at which both, the numerator (E = 0) and the
denominator (M = 1) of (3.6) vanish, The current density is j, <0 to the left of
the line OK ,and j, > 0 to the right, Passage across the line OK is impossible for
reasons given in Sect, 2,

The line u = u, = uy(1 + yM?) / (y -+ 1) is shown in Fig. 3 by dashes, and
dM | dE = ( everywhere on this line except at the points 4 and B . In the shaded
areas, dM / dE > (. The lines appearing on the figure divide the w% -plane into
seven regions in which various modes of flow can be realized, When E > 0, we have
M <1 in the regions OCBZ, OZBV ANE, PAN, M > 1in CBWAPLH and
BV AW ; when E <0, we have M <1 in ¥FDCOS and M >>1 in GHCDF.

The second equation of (3, 4) implies that the electric field increases as we move
along the channel, With the velocity and the electric field given at some cross section
of the channel, the behavior of u and £ during the motion that follows, can be described
by (3.6) and is indicated by arrows in Fig, 3, The value of the Mach number equal to
unity may be reached on moving along the channel (motion in the uE -plane in direc-
tions indicated by arrows), the arrows touch the parabola M =1 in the uk -plane,

If at the same time the integral curves do not pass through the singular points 4, B
or C, then the above situation can only occur at the channel exit. Continuous passage
through the value M == 1 at the points distinct from 4, B or €, is impossible,

It is shown in Sect, 4 that the singular points 4 and C are saddle points, In general,
the passage from subsonic mode to supersonic and vice versa are possible at these points,
The singular point B can either be a focus, or a node , depending on the values of v, II,
m and b . In the first case the integral lines approaching the point B must intersect
the curve M = 1 at the point different from B, and this corresponds to the channel
exit, In the second case, the integral curves may enter the point B and a continuous
passage through the sonic speed may also take place,

The parabola M = oo is unattainable at finite value of gas velocity, The gas may
be accelerated indefinitely in the regions CBW APLH and OZBV ANE ,and in the
latter region the acceleration occurs at M < 1. Region Q DR HC corresponds to the
generating mode (j,E << 0) in the uE -plane, in the remaining regions the accelerating
mode takes place,

We note that flows with discontinuities can be constructed in certain cases, Under
the present formulation these will, generally, be gasdynamic discontinuitjes at which the
electric field is constant and the condition j, = const holds, The corresponding passage
in the uEy -space will be the passage from the part of the surface (3, 3) at which M >1,
to that part at which M <1

If the constants j,;, v, b, m and II together with the boundary conditions

u=uy E==E, when z=0 (3.9)
at the channel entry are given, then the Cauchy's problem (3.4) and (3, 9) can be solved
to yield the velocity and electric field distribution along the channel, We may however
find, that at a certain cross section of the channel either the M =1 or the velocity
u= — bE is reached, If the formulation of the problem leaves the channel length unde~
fined, it can be assumed that the channel exit corresponds to this cross section, If, on the
other hand, the channel length is given, we may find that the cross section in question is
reached at z < L (where L denotes the channel length), i, e, that the Cauchy’s problem
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is formulated incorrectly, Formulations of the problem leaving £;and II unknown, are
possible, Such a situation arises e, g, when the boundary conditions for the electic field

potential are given =0 when z==0, p= ¢, (or 9¢/dz=10) when z= 1L

When the Cauchy's problem (3.4) and (3, 9) has no solution, a boundary value problem
must be constructed for the system (3,4) similarly to what is done in gas dynamics, We
can e, g, define the values of the velocity and the Mach number at the channel exit

U= Uy = — kbEy, M= My when z= 1
Here k<1 for j, << 0 and k > 1 for j, > 0. In addition, either the relevant number
of conditions must be set up at the channel entry, or some of the constants II, /5, m , etc,
must be assumed definable by the solution of the problem,
In the case of a constant electric field, the boundary conditions are formulated in a
similar manner,

4, Investigation of singular points of the one-dimensional flow
equations, When the electric field is constant,i.e, £ = E, , the singular points can
conveniently be investigated in the UM -plane, Equation (2, 1) has three singular points
there, at which the numerator and the denominator of the right side of (2, 1) vanish simul~
taneously, Coordinates of these points are given in Sect,2 (points 0, 4 and B),

Points 0 and A4 are nodes [2], Indeed, the characteristic equation at O is

M—oh—P=0,a=3, B= —2 4.1)
Roots of (4. 1) are real and of equal sign (A, = 1, Az == 2). At the point 4 the roots of
the characteristic polynomial are A; = 1and A2 = 2/ y.
Point B is a saddie point, Indeed, the characteristic equation at B has the form

Beah—B=0,a=-—2(—1), p=4 (4.2)

Its roots are real and of opposite signs A, == 2 and A s == — 2y. Two integral curves pas-
sing through B exist and are given in Sect, 2,

Study of the stability of the passage through the sound velocity at & requires the char~
acteristic equation in the Mz-plane, It can easily be shown that it has the form

2 . (r — 1) joEo
Ao +B=0, a=—38(y-~1), B=—15%, S:W>O

From it we see that the singular.point in the Mz-plane is also a saddle point (f < 0).
Utilizing the results of [3] we can conclude that the continuous passage through the sound
velocity along the particular solutions is stable, since a in the characteristic equation is
negative,

When the electric field is variable, Eq,(3.6) may have one, two or three singular points
in the u% -plane; it depends on the values of parameters ¥, II, m and & . Figure 3
depicts the case of three such points, namely 4, B and €. Coordinates of € are E, = 0,
u, = yII/ m (y + 1), the coordinates of A and B are given in Sect, 3 (see (3, 8)).

Point C is a saddle point, since the characteristic equation at C has the form

A2 522 0, }"1,‘2= + B, p= lan v+ 1) muc]’/z
its roots being real and of opposite sign,

Two integral curves passing through the point C exist (Fig, 3), along which a continu~
ous passage of the flow from the subsonic to the supersonic or subsonic mode, and from
the supersonic to the subsonic or supersonic mode is possible, Singular points 4 and 2
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are distinct, when the discriminant A >0 (see (3, 8) ), Charcteristic equation at the point

4 s M — ok B =0, a=—(r—1) By, p= — pE4A": (4.3)
its roots are real, and are of opposite sign,

It follows, that the singular point 4 is a saddle point, Two integral curves pass through
it and a continuous passage from the supersonic flow region to the subsonic or supersonic,
and from the subsonic region to the supersonic or subsonic region, is possible on these
curves,

Point B can either be a node or a focus, depending on the values of parameters y, I
m.and § , The characteristic equation at B has the form

b

M_ah—p=0, a= — (y — 1) Ep, p= — yEpA' (4.4)
It can easily be shown that B is a focus when
¢ 81 (r2+1) 470 (Y2 — 1) mb
L e

Figures 4 and 5 show two possible arrangements of the integral curves when B is a
focus, Continuous passage through the sound velocity at the point B is impossible, since
v : v

the line M=:1 is reached during the approach to B-.
# f’/ A
= 4 5 ; 2

2 £ £

Fig. 4 Fig. 5

If 1>c¢/d2> 8y (y* 4 1)/ (y -+ 1)%, then B will be a node at which the continu~
ous passage is possible, Analyzing the exclusive directions we find, that the only possible
continuous passage is that from the supersonic to subsonic region,

To investigate the stability of passages through the sound velocity at 4 and B , we
must write the characteristic equation at these points in the Mz -plane, This is easily
done using (3, 5) and expanding the electric field magnitudes near the singular point
into a series: E= E,4 p+ 4nqq p-(z — 24,5} where E4 B, 94 B,za B denote the
values of the parameters at the singular point,

In the Mz -plane we have G4 B T ) (12 — 1) mb

M—ah—B=0, a=——T5", B=miiE |4 p— 4]
from which it follows that in the Mz-plane the point A. will be a saddle point, and
can either be a node, or a focus, Since B in the characteristic equation is negative, the
continuous passage through the sound velocity is stable at 4 and B [3].

Singular points 4 and B are absent when A <0, When A = 0 , the points 4 and B
merge into a single point which, as seen from (3, 6), is a degenerate saddle point,

One-dimensional motion in electrohydrodynamics at large electric Reynolds numbers
was dealt with in [4].
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DIFFRACTION OF A CYLINDRICAL HYDROACOUSTIC WAVE

AT THE JOINT OF TWO SEMI-INFINITE PLATES
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The two-dimensional stationary diffraction problem is considered, A fluid medium fills
the lower half-plane in which acoustic effects are generated by a point type source loca-
ted at a certain depth, The surface of the fluid is covered by two abutting semi-infinite
plates, Mechanical properties of the two plates are assumed to be different, An exact
mathematical solution of the problem is constructed for the case in which conditions at
the plates abuttment are not fixed. This solution (which we shall call "general™) con-
tains a certain number of arbitrary constants, The method for determination of these
constants for specified conditions at the joint is indicated, A characteristic of the latter
problem is that formal application of the boundary contact operators to the general solu-
tion generates divergent integrals of expressions which increase algebraically at infinity,

The analysis is carried out in certain abstract terms . The expressions of boundary, and
boundary contact operators are not specified, hence these results are valid for the various
methods used in plate theory approximations, The derived solutions may also be used for
other boundary conditions (e, g, when one part of the fluid surface is left free, or covered
by a membrane),

1, Formulation of problem, A compressible fluid fills the lower half-plane
(— 00 <z <<+ 00, 0 <y <<=+ 00). Two semi-infinite plates lie on the surface
of the fluid (y = 0) extending respectively in the positive and negative directions of
the x -axis (Fig. 1). The field generated in the described system by a point source of har-
monic oscillations (at point Z,, ¥,) is to be defined, Factor ¢ ! defining the depend-
ence of processes on time will be everywhere omitted,

We shall describe the acoustic processes in the fluid in terms of pressure P(z, y)-

The problem as stated consists of finding a solution of the inhomogeneous Helmholtz'

SHANMAP L BP =8 (x—T0, Y—Yo) (—ox <o <lAo0, 0<y<+o0) (1.1)
with boundary conditions
LiP =0 (@@>0), LP =0 (<0) (1.2)



