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Using the framework of electrohydrodynamics we study steady motions of a conducting 
medium composed of both, charged and uncharged components. Volume Charge present 
in the medium and its interaction with the electric field, define the motion of the medi- 
um. Two cases- are Considered. In the first case we assume that the parameter Q (Q = 

= k(r, c / Eof is small and the electric field given. General solution of the problem is 

obtained in the explicit form for the case when the field Es is constant, and a family of 
integral curves is constructed in the veloCi2)r-Mach number plane. If the velocity and 

Mach number are known at some point of the flow, we can use these curves to find the 
behavior of the flow downstream. In the second case we consider a flow fn a variable 

electric field (arbitrary values of Q). A diagram constructed in the velocity-electric field 
plane makes possible a visual study of the motion in the case of a variable electric fieid, 
Singular points of the system of equations of the one-dimensional flow are investigated 

and the stability of the transonic passage is discussed. 
One-dimensional equations in a constant electric field were investigated in [l] under 

a number of simplifying assumptions. 

1, ~und~~~~~~l CI~UP~~OTII~ We Consider a steady motion of a compressible, 
nonviscous medium without heat conduction, possessing volume charge in an electric 
field. We assume that all quantities depend on q only and that the electric field has a 

single component x. Motion in a channel of constant cross section in the case when the 

electric field component normal to the walls is neglected, is an example of such a flow, 

For the problem under consideration, the equations of elec~hydr~ynam~cs will have 

the form Pu = m = const, 212uf -j- pI = pE, m&T _t 0.5 l+ = j& (1.f) 

E” = L&q, cp! =z - E, p= QRT, j = q(u -+ hE) -= j. = const (1.2) 

where p denotes the density of the medium, u is the x -component of the velocity 

(U > O), p is pressure, Q is the electric volume charge density, E is the electric field 
strength, T is the temperature, f is the electric: current density, cP and R are the spe- 
CifiC hear at constant pressure and the gas constant, respectively, and the prime denotes 
the derivatives with respect to z. We shall assume, for definiteness, that q > 0. For 

Q < 0 the procedure is identical. 
From (1.1) and (1.2) we obtain 

up = gEMa (u - 4 
muf&P--l) * 

iM, = qEM3 (r 4- i) (n - uzt 
2nu2 (W - a) 

Q.3 

whereM.is the gasdynamic Mach number and b is mobility, 

9, Plow in a con#t&nt electric field. First equation of (1.2) can be writ- 

ten as Jr%.’ = og** 0 =4nq,L/& E, =EI&, ~a = ~/QO 

where & is the characteristic length. We shall consider the case of small Q , ass~rni~~ 

E = E, = con&. Then, taking the expression for the charge density q from the last 
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General solution of (2,l) has the form 

where ljfaandN,,are the values of the parameters at cross section CC 5 0, 

General solution of (1,s) with (2.2) taken into account is given by 

Equations (2.2) and (2,9) define the dependence of the velocity and the Mach num- 

ber on r+ 

Fig. 1 Fig. 2 

Figures 1 and 2 depict the integral curves of Eq. (2.1) for Es > 0 and &a < 0 , 
respectively, The field of integral curves depends on a single parameter y. Passage 
along the integral curves in directions indicated by arrow% corresponds to the motion 

downstream. 
Let us consider the case E, > 0 (Fig, I>, The straight line u = 1 and the finer 

M = 1 and U = U, shown by the broken lines. divide the plane into six regions, 

Points Cl(O, O),,A (0, 1) and 41,1) are the singular pointi of (2.1). In Sect.4 we 
show that the points 0 and A are nodes, and & is a saddle point. The lines &r = 0 and 
M= 0 represent particular solutions at the point 0 , the lines U = 1 and M = 0 
- at the lx&n A l and the Iines u = H2 and g = 1 - at the point B, We note 
that the line u = Ms also passes tlnough 0, and the line ti = 1 connects the sin* 

gular points A and 3. 
If in some cross section of the channel the velocity and Mach number have such values 

that the corresponding points on the UM -plane are situated in region 6 and in the part 
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of region 1 below the integral curve u = .&f2, then the Mach number may reach the 
value of unity during the passage downs~eam. This may, however, happen only at the 
end of the channel. In region 4 the gas may be accelerated indefinitely. Integral curves 
lying in the regions 2 and 3 terminate at the point A. 

All points of intersection of the line u = u s with the integral curves with exception 
of the point B are such, that the tangents to the integral curves are vertical at these 
points. 

If the initial values lie on the line u = &f2 (when M ( 1) or on u = 1 (when 
&f > I), a continuous passage through the sound velocity may take place in the motion 
along the channel. In the first case it is possible to pass from the subsonic to the subsonic 

or supersonic mode. and in the second case - from the supersonic to the subsonic or super- 
sonic mode. The outcome depends on the boundary conditions at the channel exit. In 
Sect.4 we show, that all modes in which a continuous passage takes pface at the point 
B , are stable. Formula (2.3) yields the distance from the channel entry to the point at 
which such a passage occurs. For the first and second case we have, respectively, 

Let us consider the case when E,, < 0. The lines u = $/(y - 1) and &r = 1 
divide the U&f-plane into four regions. Electric current density is positive above the 

line u = 1 / (y --I), and negative below it. Regions 2 and 3 correspond to the gene- 

rating mode ( j,E, < 0, i, > o), and regions 1 and 4 - to the accelerating mode 

fit&J > 0, is (0). S ince in the given formulation 1 = j0 = con& the passage 

from the accelerating to the generating mode and vice versa, is impossible, Let us recall 
that Q > 0. Figure 2 shows that under certain conditions a motion is possible in the 
regions 2 and 3 such, that u + - bE,. From the last equation of (1.2) it follows, that 

in such a motion q + 00 ( u’, 111” and E”also tend to infinity). 
If we consider a one-dimensional flow in a channel of arbitrary length, then the chan- 

nel exit should correspond to the point at which the velocity assumes the value u=-bB.. 
If the channel length is given, the correcmess of the formulation,of the problem should 

be ensured by the proper choice of the boundary conditions. The problem of formulation 
of the boundary conditions for the system (1.3) is discussed in Sect. 3. 

The case j0 = 0 corresponds to a gasdynamic flow with constant parameters. 
We note that the case lo = 0 also describes a flow in an EHD generator in the stand- 

by condition, and we have q= 0 and ~0 = --bEo = eon&. The potential difference over 

the length L of the generator is AQ = -E,,L = u,Lfb. 

3, Flow in a vrrirble electric field. We shall consider the case of arbi- 
trary Q. We can integrate the last two equations of (1. l), introducing the electric field 
potential cp and eliminating the charge Q with help of the first equation of (1.2). Then 
we will have 

pu=m=rconst, mu + p - E2 / 82x = 11 = const 

m(c,T + 0.5 u2) + jocp = E = const 

Using the third equation of (1.2) we obtain from the above equations 

(3.1) 

(3.2) 
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which describes a third order surface in the &y-space, containing the integral curves 
of the initial system. However, only 

, that part of the surface on which 

u > 0 and y > 0 , is physically 
meaningful. Translation along the 

surface (3.3) corresponds to a mo- 

tion along the channel. Although 

this surface can easily be constructed 
in the uEy -space, various modes 
of flow can be studied conveniently 

in the case of a variable electric 

field in the r&-plane, projecting 

n a part of the surface (3.3) on the 

Fig. 3 
plane y = 0 (Fig, 3). 

Equations describing the behavior 

of the inteRra curves on the uE-plane have the form 
du ioE [u - (7 - 1) h?zI dE 
z= 

4nio 
(U+bE)[(r+1)mu--yB--yE2/8n]’ -xc= - u + &E (3.4) 

First equation of (1.3) and the relation 

Ms= 
mu 

-r(II+E2/83t--mmu) 
(3.5) 

were used in constructing the first equation of (3.4). 
Formula (3.5) follows from the second equation of (3.1). Eliminating the variable x 

from (3.4) we obtain du E[u-((r-QbE] 
-ZZ 
dE 4n[(~+1)mLt--rn-riiz/8n] (3.6) 

Below we shall only consider the case when n > O,since in the case of fl < 0 the 

procedure is analogous. 
Figure 3 depicts the parabolas M = 1 (line ABCDP) and M = oo (line LHG). 

Equations of these parabolas follow from (3.5) and are, respectively, 

u= T 
m(ri*) (J-w8H-q* ~=(~2/8~~~)/~ (3.7) 

The region contained between the straight line u = 0 and the upper parabola LHG 
corresponds to a real flow in the u.E-plane. The flow is supersonic (M > 1) in the 
region above the parabola PABCDF and subsonic (M(i) below it. In addition Fig. 

3 shows the lines u = - bE (line OK) and u = ul= (r -1) bE (line ON). Rela- 
tive positions of the parabolas M= 1 and M = 00 and the lines u = u1 and Y=- bE 
may vary according to the parameters y, n, m and b. Coordinates of the points of 
intersection of the line u = u1 and the parabola M = i are 

E, = d + nf/z, E, = d - n 1’2, f~ = d2 - 8nII, d = 4n(y2 - 1) mb / y 

U&B = (Y - 1) bEA,*, E_.t,m 5 0 (3.8) 

Figure 3 illustrates the case when n > 0 , where we have two points of intersection, 
When L?L = 0, then the line u = u1 touches the parabola M = 1. and when n < 0 , 
there are no common points. We note that the line u = ui can also intersect the para- 
bola M = 00. On crossing the line u = u1 and the parabola P ABCDF we find, 
that the derivative du / dE changes its sign everywhere except at the points A and B 
where it needs not. On the line u = U1 the derivative du / dE becomes zero, and on 
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the parabola PABCDF it becomes infinite. Points of intersection A and B are singular 
points of Eq. (3.6) as well as the point c at which both, the numerator (E = 0) and the 

denominator (M = 1) of (3.6) vanish. The current density is 1s < 0 to the left of 

the line OK, and j,, > 0 to the right, Passage across the line OK is impossible for 
reasons given in Sect. 2. 

The line u = us = u,(i + yM2) / (y + 1) is shown in Fig. 3 by dashes, and 
dM / dh’ = 0 everywhere on this line except at the points d and i? . In the shaded 
areas, d8$ / &? > 0. The lines appearing on the figure divide the &$-plane into 

seven regions in which various modes of flow can be realized. When E > 0 , we have 

M ( I in the regions OCBZ, OZBV ANE, PAN, M > 1 in CB WAPLH and 
BVAW ; when E < 0, we have M < 1 in IJDCOS and -&I > 1 in GHCD$‘. 

The second equation of (3.4) implies that the electric field increases as we move 

along the channel. With the velocity and the electric field given at some cross section 

of the channel, the behavior of u and E during the motion that follows, can be described 

by (3.6) and is indicated by arrows in Fig, 3, The value of the Mach number equai to 

unity may be reached on moving along the channel (motion in the uE-plane in direc- 
tions indicated by arrows), the arrows touch the parabola M = 1 in the u&-plane. 
If at the same time the integral curves do not pass through the singular points A , B 
or C, then the above situation can only occur at the channel exit. Continuous passage 

through the value M = 1 at the points distinct from A , B or C, is impossible. 
It is shown in Sect.4 that the singular points A and C are saddle points, In general, 

the passage from subsonic mode to supersonic and vice versa are possible at these points, 

The singular point B can either be a focus, or a node, depending on the values of y, HI, 

m and b . In the first case the integral lines approaching the point B must intersect 

the curve &f = 1 at the point different from B, and this corresponds to the channel 

exit. In the second case, the integral curves may enter the point B and a continuous 

passage through the sonic speed may also take place. 

The parabola M = a3 is unattainable at finite value of gas velocity, The gas may 

be accelerated indefinitely in the regions CBfiV APLH and OZBV ANE , and in the 

latter region the acceleration occurs at N ( ‘i. Region ODR Hi? corresponds to the 

generating mode (j,E (0) in the r&-plane, in the remaining regions the accelerating 

mode takes place. 

We note that flows with discontinuities can be constructed in certain cases. Under 
the present formulation these will, generally, be gasdynamic discontinuities at which the 
electric field is constant and the condition ic = const holds. The corresponding passage 
in the u.lQ -space will be the passage from the part of the surface (3.3) at which &’ >l, 

to that part at which M < 1 
If the constants i,,, y, b, m and II together with the boundary conditions 

u= us, E = I&J when z = 0 (3.9) 

at the channel entry are given, then the Cauchy ‘s problem (3.4) and (3.9) can be solved 
to yield the velocity and electric field dist~bution along the channel. We may however 
find, that at a certain cross section of the channel either the &i= 1 or the velocity 

u = - bE is reached. If the formulation of the problem leaves the channel length unde- 

fined, it can be assumed that the channel exit corresponds to this cross section, If, on the 
other hand, the channel length is given, we may find that the cross section in question is 

reached at 5 < L (where L denotes the channel length), i.e. that the Cauchy’s problem 
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is formulated incorrectly. Formulations of the problem leaving E,, and n unknown, are 

possible. Such a situation arises e.g. when the boundary conditions for the electric field 
potential are given 

9 = 0 when 5 = 0, cp = ‘pl (or acp / ax = 0) when 2 = L 
When the Cauchy ‘s problem (3.4) and (3.9) has no solution, a boundary value problem 

must be constructed for the system (3.4) similarly to what is done in gas dynamics. We 

can e.g. define the values of the velocity and the Mach number at the channel exit 

U= uL= - j&EL, M= ML when x= L 

Here k < 1 for j0 < 0 and k > 1 for je > 0. In addition, either the relevant number 
of conditions must be set up at the channel entry, or some of the constants II, jot m , etc. 

must be assumed definable by the solution of the problem. 
In the case of a constant electric field, the boundary conditions are formulated in a 

similar manner. 

4. Invettigation of ringular point8 of the one-dimcrntional flow 
equatlon8. When the electric field is constant, i.e. E = E, , the singular points can 
conveniently be investigated in the UM-plane. Equation (2.1) has three singular points 
there, at which the numerator and the denominator of the right side of (2.1) vanish simul- 

taneously. Coordinates of these points are given in Sect.2 (points 0, A and 3). 
Points 0 and A are nodes 121. Indeed, the characteristic equation at 0 is 

K-ak-$=O, a=3, fi=-2 (4-i) 

Roots of (4.1) are real and of equal sign (h, = 1, hi = 2). At the point A the roots of 
the characteristic polynomial are h, = 1 and he = 2 / y. 

Point B is a saddle point. Indeed, the characteristic equation at 3 has the form 

liz- ah- @= 0, a= -2(y- i), @= 4y (4.2) 

Its roots are real and of opposite sign : hl = 2 and h 2 = - 2~. Two integral curves pas- 

sing through B exist and are given in Sect.& 
Study of the stability of the passage through the sound velocity at B requires the char- 

acteristic equation in the Mx-plane. It can easily be shown that it has the form 

h”-czrh+p=0, a=-S((r-I), p=-~rs”, 
,r = (7 - If i0E0 

yrnul” >O 
From it we see that the singular.point in the Mz-plane is also a saddle point @ < 0). 

Utilizing the results of [3] we can conclude that the continuous passage through the sound 

velocity along the particular solutions is stable, since a in the characteristic equation is 
negative. 

When the electric field is variable, Eq. (3.6) may have one, two or three singular points 
in the z&-plane ; it depends on the values of parameters y, II, m and b , Figure 3 

depicts the case of three such points, namely A, B and C. Coordinates of C are E, = 0, 

uc = ‘yn[ / m (v + I), the coordinates of A and B are given in Sect. 3 (see (3.8)). 
Point C is a saddle point. since the characteristic equation at C has the form 

ha - @” = 0, k&2 = f p, B = [kc (7 + 1) mu,]‘~~ 

its roots being real and of opposite sign. 
Two integral curves passing through the point C exist (Fig. 3), along which a continu- 

ous passage of the flow from the subsonic to the supersonic or subsonic mode, and from 
the supersonic to the subsonic or supersonic mode is possible. Singular points A and B 
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are distinct, when the discriminant A >0 (see (3.8)). Charcteristic equation at the point 
A is 

ha - ok + fi = 0, a = - (y - 1) EA, p = - yEAA’/1 (4.3) 
its roots are real, and are of opposite sign. 

It follows, that the singular point A is a saddle point. Two integral curves pass through 
it and a continuous passage from the supersonic flow region to the subsonic or supersonic, 
and from the subsonic region to the supersonic or subsonic region, is possible on these 

curves. 
Point B can either be a node or a focus, depending on the values of parameters y, II, 

m and b . The characteristic equation at B has the form 

h2 - &, _ fi = 0. o = - (v - 1) EB, /3 = - yE,A”* (4.4) 

It can easily be shown that B is a focus when 

6~ (-r2 + 1) 
&< (r+ I)4 ’ 

d = 4~ (Y - 1) mb 
7 

, c=&crI 

Figures 4 and 5 show two possible arrangements of the integral curves when B is a 

focus. Continuous passage through the sound velocity at the point B is impossible, since 
the line M---l is reached during the approach to B,. 

Fig. 4 Fig. 5 

If 1 > c / d2 > Sy (y2 i- i) / (y + i)p, then B will be a node at which the continu- 

ous passage is possible. Analyzing the exclusive directions we find, that the only possible 
continuous passage is that from the supersonic to subsonic region. 

To investigate the stability of passages through the sound velocity at A and B , we 

must write the characteristic equation at these points in the Mz-plane. This is easily 

done using (3.5) and expanding the electric field magnitudes near the singular point 
into a series: E = EA.B+ 4nqA,B'(x- XA.B) where EA.B, QA.B,XA,B denote the 

values of the parameters at the singular point. 
In the MX -plane we have 

I p= (&a;A, B LEA. .-44n 
(~2 - 1) mb 

r 1 
from which it follows that in the Mz-plane the point A. will be a saddle point, and 
can either be a node, or a focus. Since B in the characteristic equation is negative, the 
continuous passage through the sound velocity is stable at A and B [3]. 

Singular points A and B are absent when A < 6 . When A = 0 , the points A and B 
merge into a single point which, as seen from (3.6). is a degenerate saddle point. 

One-dimensional motion in electrohydrodynamics at large electric Reynolds numbers 
was dealt with in [4]. 
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The two-dimensional stationary diffraction problem is considered. A fluid medium fills 
the lower half-plane in which acoustic effects are generated by a point type source loca- 
ted at a certain depth. The surface of the fluid is covered by two abutting semi-infinite 

plates. Mechanical properties of the two plates are assumed to be different. An exact 

mathematical solution of the problem is constructed for the case in which conditions at 
the plates abuttment are not fixed. This solution (which we shall call “general”) con- 
tains a certain number of arbitrary constants. The method for determination of these 

constants for specified conditions at the joint is indicated. A characteristic of the latter 
problem is that formal application of the boundary contact operators to the general solu- 

tion generates divergent integrals of expressions which increase algebraically at infinity. 
The analysis is carried out in certain abstract terms . The expressions of boundary, and 

boundary contact operators are not specified, hence these results are valid for the various 

methods used in plate theory approximations. The derived solutions may also be used for 

other boundary conditions (e.g. when one part of the fluid surface is left free, or covered 
by a membrane). 

1. Formulation of problem. A compressible fluid fills the lower half-plane 

(-- wcx<+ w,o<y<-tw). Two semi-infinite plates lie on the surface 
of the fluid (y = I)) extending respectively in the positive and negative directions of 

the x-axis (Fig. 1). The field generated in the described system by a point source of har- 
monic oscillations (at point x,,, 9,) is to be defined. Factor eeiw’ defining the depend- 

ence of processes on time will be everywhere omitted. 
We shall describe the acoustic processes in the fluid in terms of pressure P(x, y). 

The problem as stated consists of finding a solution of the inhomogeneous Helmholtz’ 

equationiiP+k2P=6(.r:--o, y-y,,) (-cx<z<+x,, ~<~<+so) (1.1) 

with boundary conditions 

L1P = 0 (z>O), LBP = 0 (z<O) (1.2) 


